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A new acoustic transformer was developed by connecting three horns to improve
radiation performance in the frequency region below 500Hz. The proposed acoustic
transformer was evaluated by numerical analysis using the commercial computer program
SYSNOISE and by experiment. The acoustic transformer is composed of three horns, one
of which was used in an inverted form. A design model was developed by use of Webster’s
horn equation and showed that the transformer can improve radiation efficiency. This was
confirmed by numerical calculation using SYSNOISE. An acoustic projector was designed
by use of the developed transformer and a piezoelectric unimorph-type actuator. The
sound pressure measured at the mouth of the constructed acoustic projector was compared
with the sound pressures evaluated at the same location by numerical calculation to
investigate the differences between the numerical simulation model and the actual acoustic
projector. Sound pressures generated by several acoustic radiators were calculated
numerically and compared with the measured and calculated sound pressures of the
developed acoustic projector to evaluate the effects of use of the proposed acoustic
transformer. The comparative evaluation shows that the proposed acoustic transformer
can provide up to a 10 dB gain over use of a horn in the narrow band low-frequency region
from 100 to 200Hz.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The size of the radiation surface of a vibrating object is important for efficient acoustic
radiation. Theoretically the load due to sound radiation reaches its maximum when the
size of the radiation surface is almost equal to the wavelength of the sound generated. In
real situations, it is nearly impossible to construct a sound generator with a radiation
surface large enough to radiate low-frequency sounds efficiently. A horn has been used to
improve the radiation efficiency of acoustic transducers by increasing radiation resistance
and focusing the generated acoustic waves.

A horn is a type of waveguide with a variable cross-section area. In many acoustic
devices, the role of the horn is to help acoustic waves to propagate from one region in a
waveguide to a region with larger cross-sectional area with a little reflection as possible.
The mouth of a horn, which has the larger cross-sectional area, is usually connected to an
open acoustic medium such as air or seawater. For this reason a horn is sometimes called
an acoustic transformer. The effects of a horn as an acoustic transformer are excellent. In
general, an acoustic radiation device using a horn is known to have a radiation efficiency
of up to 20%, while the radiation efficiency of a loudspeaker without a horn is from 0�1 to
2%. In the early 20th century the radiation amplification effects of horns were widely
studied because it was the only way to amplify the acoustic waves directly generated by
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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mechanical vibrations [1–4]. With the advent of electrical amplifiers and electromechanical
loudspeakers the role of the horn has changed. The directional properties of a horn have
been more frequently studied in recent years [3–5].

Horns are not used for hi-fidelity loudspeakers because they tend to distort low-
frequency sound generated by the acoustic driver. Theoretical studies have been made to
find a more rigorous wave equation for a horn in the belief that proper design of the horn
cross-sectional area could eliminate the acoustic distortions generated by horns [5–7].
Geddes claimed that a new exact wave equation for wave propagation in a horn should be
derived because Webster’s horn equation is only approximate. He tried to derive a one-
parameter wave equation using curvilinear co-ordinate systems. In response to Geddes’s
papers, Putland claimed that it is impossible to find an exact one-parameter wave equation
in an arbitrary curvilinear co-ordinate system [8, 9]. It is shown in his paper that any one-
parameter wave equation is in the form of Webster’s horn equation and that the well-
known wave equations such as spherical or plane wave equations are the only one-
parameter wave equations that can be derived from the general linear wave equation [8].

In spite of the fact that a horn may not be a satisfactory acoustic transformer, no other
device can replace its role as an acoustic transformer. In this paper, a waveguide composed
of three horns is studied for use as an acoustic transformer for low-frequency acoustic
projectors such a low-frequency SONAR. An direct generation method based on non-
linear interaction of acoustic waves has been widely used to generate low-frequency sound
for the low-frequency active SONAR system because the conventional method for sound
generation cannot generate low-frequency sound with an acceptable efficiency [10, 11]. It is
useful for the low-frequency active SONAR system to improve the radiation efficiency of
low-frequency sound considerably.

It is well known that a horn can provide a good gain in radiation efficiency of low-
frequency sound generation. However, it does not guarantee any advantage below a
certain frequency, such as the cut-off frequency of exponential horns. In order to improve
the characteristics of horns as acoustic transformers, a three-horn waveguide is studied
here. The three-horn waveguide was made by combining two consecutive horns with an
exponential horn at their throats. The expected advantage of this combination is an
increase in acoustic radiation performance in the frequency region lower than the cut-off
frequency of the inverse exponential horn, since the particle velocity can be amplified
through the inverse horn.

In this paper, the properties of one type of the proposed three-horn waveguide are
investigated theoretically and experimentally. By combining models for the three horns
that comprise the waveguide, an analytic model based on Webster’s horn equation for
three-horn waveguide was developed. The derived model was used for designing and
fabricating a real three-horn waveguide for experimental evaluation of its effects on the
generation of low-frequency acoustic waves.

2. MODELLING OF AN ACOUSTIC TRANSFORMER

A three-horn acoustic transformer was designed by use of a formula that can be derived
from Webster’s horn equation. The procedure for developing the design model was
composed of three parts: calculation of the transmission characteristics of an exponential
horn of finite length; calculation of the transmission characteristics of a conical horn of
finite length; and the combining of the transmission characteristic of two exponential
horns}one that is used in the forward direction, the other in the backward direction}and
a conical horn. The shape of the three-horn acoustic transformer is illustrated in Figure 1.
This configuration is similar to the one presented by Keele [12].
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The following three subsections describe the theoretical approach used to obtain the
formula for calculating the acoustic characteristics of the three-horn acoustic transformer
proposed in this paper. The approach is basically similar to the method to calculate
transmission impedance of an exponential horn found in Beranek et al. [13–15]. The first
two subsections are on the analytic methods for calculating the transmission characteristics
of exponential and conical horns based on Webster’s horn equation and the last subsection
is on how to combine the results for use in the design of the transformer.

2.1. MODELLING OF EXPONENTIAL HORNS AND BACKWARD EXPONENTIAL HORNS

The analytic solution of Webster’s horn equation for exponential horns is well known.
The following is Webster’s horn equation:
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where p; c; and S are acoustic pressure, sound propagation speed and the cross-sectional
area of the horn respectively.

The cross-sectional area of exponential horns illustrated in Figure 2 can be expressed by
S ¼ S0e

mx where S0 is the cross-sectional area at the throat and m represents the flare
constant of exponential horns. It is well known that exponential horns have a cut-off
frequency, fc: In the frequency region under the cut-off frequency waves will not propagate
theoretically in the forward direction. The cut-off frequency is related to the propagation
speed c and the flare constant m ¼ 4pfc=c [16, 17]. In the case of exponential horns,
Webster’s horn equation reduces to the following simple solvable form:
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Figure 1. A three-horn acoustic transformer.



Figure 2. An exponential horn.
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The solution of Equation (2) can be expressed as follows:

p ¼ Ae�jðb�jaÞx þ Be�jð�b�jaÞx; ð3Þ

where
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By use of Equation (3) and the approximate momentum equation in linear acoustics, the
particle velocity can be expressed as follows:

u ¼ e�ax
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Now the transmission matrix that represents the transmission characteristics of a horn of
finite length can be calculated using Equation (4). The particle velocities and the acoustic
pressures at the throat and mouth are related by a matrix as follows:
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where the subscripts ð Þt and ð Þm represent pressure and velocity at the throat and mouth
respectively. Equation (5) can be obtained by substituting the following expressions into
equations (3) and (4):

A ¼ eaL�ðpm=rcÞe jðyþbLÞ � ume jbL

�ð1=rcÞ½e jy þ e�jy	 ; B ¼ eaL�ðpm=rcÞe�jðyþbLÞ þ ume jbL

�ð1=rcÞ½e jy þ e�jy	 : ð6Þ
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Equation (5) can be used for calculating the transmission characteristics of a backward
exponential horn of finite length. The transmission matrix may be the inverse matrix of the
transmission matrix shown in Equation (5).

2.2. MODELLING OF CONICAL HORNS

The governing equation of a conical horn can be derived through two paths: Webster’s
horn equation and the spherical wave equation. As mention in the introduction it shows
that the governing equation of a conical horn is one of the existing one-parameter wave
equations. The equation for conical horns is exact if the propagating wave through the
horn is a spherical wave. In Webster’s horn equation, a plane wave is assumed to be valid.
The difference between the theories for a conical horn based on the spherical wave
equation and Webster’s horn equation becomes obvious at the throat. In the case of
exponential horns, the assumptions of Webster’s horn equation are acceptable at the
throat only if the flare constant is sufficiently small. For a spherical wave propagating
through a conical horn, the assumptions cannot be valid at its throat.

Now, if the cross-sectional area of a conical horn is set to be S ¼ S0r2 as shown in
Figure 3, the exact one-parameter wave equation based on spherical waves may be
expressed as follows:
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where r is the component of a location in the radial direction of a spherical co-ordinate
system.

The velocity potential function j of spherical waves is well known:

j ¼ A

r
e jðot�kðr�r0ÞÞ þ B

r
e jðotþkðr�r0ÞÞ ð8Þ
Figure 3. Conical horn.
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By use of the relations p ¼ �p@j=@t and u ¼ rj; the following relations similar to those
found in reference [18] between pressures and velocities at the mouth and throat can be
obtained as before:
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and r1 is the radius of the outlet cross-section.

2.3. ANALYSIS OF THE EACH PART

Since the three-horn acoustic transformer is composed of a backward and forward
exponential horn and a conical horn, the transmission matrix for the three-horn acoustic
transformer may be calculated using the transmission matrices obtained in the previous
section for the individual horns. After calculating the pressure and particle velocity, the
impedance is calculated at the location of the transducer by use of the transmission
matrices derived in the previous section. The radiation impedances of the conical, and the
backward and the forward exponential horns are given as Zcon;Zb exp; and Zf exp;
respectively, in the following:
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Table 1

Formula for the coefficients in the transmission matrices
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where Z1;Z2;Z3;S1;S2 and S3 are the mechanical impedances at and the cross-section
area of the outlets of the conical, and the backward and forward exponential horns
respectively. The coefficients in equation (10) are given in Table 1. Using these expressions,
the radiation impedance of the three-horn acoustic transformer can be calculated as
follows:

Ztrans ¼ S0
ð %aa0 %aa1 %aa2 þ %aa0

%bb1 %cc2 þ %bb0 %cc1 %aa2 þ %bb0
%dd1 %cc2ÞZ3 þ ð %aa0 %aa1

%bb2 þ %aa0
%bb1
%dd2 þ %bb0 %cc1

%bb2 þ %bb0
%dd1
%dd2ÞS3

ð%cc0 %aa1 %aa2 þ %cc0
%bb1 %cc2 þ %dd0 %cc1 %aa2 þ %dd0

%dd1 %cc2ÞZ3 þ ð%cc0 %aa1
%bb2 þ %cc0

%bb1
%dd2 þ %dd0 %cc1

%bb2 þ %dd0
%dd1
%dd2ÞS3

:

ð11Þ

In this expression the coefficients are also given in Table 1 and Z3 is the impedance at the
outlet whose cross-section area in S3 as shown in Figure 1.

Figure 4 shows the real dimensions of the fabricated three-horn acoustic transformer.
The computer program Mathematica was used for numerical calculations. In order to
calculate the impedance at the inlet (where sound in generated, or an acoustic transducer is
located), the impedance at the outlet (where sound is radiated to air) needs to be known.
The radiation impedance of a circular piston with infinite baffle is selected as the
Figure 4. Overview of the new acoustic transformer.
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impedance at the outlet. This selection may make the calculated resistance larger than its
actual value. In numerical calculations only the resistance, the real part of the impedance,
is calculated because it is the important factor for the radiation efficiency.

We first consider the radiation resistance of each part. Figure 5 shows the frequency
response of radiation resistance of a backward exponential horn. The thing of interest in
this figure is that there are many peaks in the graph. Those peaks are much higher than the
peaks for the forward exponential horn illustrated in Figure 6. Since the outlet area
(throat) is much smaller than the inlet area (mouth) in the backward exponential horn, this
horn acts more like a cavity than the forward exponential horn. Hence, its peaks are
higher. The most interesting fact is that there exists a peak below the cut-off frequency. In
Figure 5, an abrupt change in the curve can be seen at around 700Hz. It is caused by the
cut-off frequency. In the region between 200 and 400Hz, one peak is found which may
imply that radiation efficiency could be improved if the backward exponential horn is
properly used. As seen in Figure 6, this effect is not evident in the forward exponential
horn.
Back exponential horn 
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Figure 5. Radiation resistance of the back exponential horn.
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Figure 6. Radiation resistance of the exponential horn.
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The cut-off frequency of the forward exponential horn, whose resistance is shown in
Figure 6, is 500Hz. Although there are many peaks that are due to its finite length, the
overall shape of the curve represents the radiation resistance of an exponential horn. Note
that the radiation effects are negligibly small in the frequency region below the cut-off
frequency of 500Hz.

The conical horn considered is quite a large one; hence, its radiation is larger than those
of the exponential horns. The impedance curve is also smooth. These characteristics are
easily observed in Figure 7. There are two peaks in the frequency region below 700Hz.
However, it is obvious in Figure 7 that their values are much smaller than the impedance
values in saturation.

Now we consider the radiation resistance of the three-horn acoustic transformer. In
Figure 8 its radiation resistance is shown to have a very large peak below 300Hz with a
value much larger than that of any other peak. This is a very interesting result because it
suggests that the three-horn acoustic transformer can be more efficient for the generation
of low-frequency sounds than a single horn that has the same inlet and outlet cross-
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Figure 7. Radiation resistance of the conical horn.
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sectional area as the transformer. This low-frequency peak can, of course, be expected
since a backward exponential horn displays a peak in the low-frequency region (Figure 5).
As mentioned above, horns were used for improving radiation efficiency at the beginning
of the era of acoustic loudspeakers, and even today horns are used for this purpose when
sound quality is not critically important and loudness is necessary. Since the value of the
cut-off frequency depends on the flare constant, the flare constant should be small to
generate sounds of low-frequency such as 100Hz. However, a horn with a small flare
constant should be very long in order to have an opening large enough to considerably
improve radiation efficiency. The three-horn acoustic transformer considered here could
be very useful since its total length required for improving radiation efficiency is smaller
than that of a single horn.

Besides the peaks in the frequency region below the cut-off frequencies of the
exponential horns used, other interesting characteristics of the three-horn acoustic
transformer can be observed in Figure 8. First, there exist discontinuities around the cut-
off frequencies of the exponential horns}a backward one and a forward one. Second, the
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Figure 8. Radiation resistance of the acoustic transformer.
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frequency of the peak (about 170Hz) is not equal to the frequencies of the peaks if the
backward and the forward exponential horns, or the conical horn, are considered
separately (Figures 5, 6 and 7). Third, the frequency response curve is not smooth. Even
though the peak-to-peak amplitude decreases with frequency, it does not seem to be
adequate to be used for hi-fidelity loudspeakers.

From the considerations above, it is concluded that the three-horn acoustic transformer
does not seem to have better frequency response characteristics for hi-fidelity loudspeaker
but that it may be able to generate narrowband low-frequency sound more efficiently. This
property may be very useful for applications such as low-frequency SONAR. The
radiation improving effects should be confirmed by numerical analysis of systems closer to
the real situations. In the following sections, we describe the numerical simulations
performed using the commercial computer program SYSNOISE. Since the effects can be
simulated by the numerical calculations, a three-horn acoustic transformer is constructed
and examined by generating sounds using a plate that is excited by a piezoelectric
unimorph. The results are described in the following section.
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3. EXPERIMENT & SIMULATION

3.1. EXPERIMENT AND SIMULATION SET-UP

A sound generator was constructed using a three-horn acoustic transformer as
illustrated in Figure 4. A vibrating circular plate, shown in Figure 9, was used as a
radiating surface. A piezoelectric rectangular thin plate was attached at the center of the
circular plate, in consideration of the conclusions by Clark et al. [19,20]. With a size of
20mm wide, 20mm long and 0�5mm thick. The whole structure was made of aluminum
and the material constants of the PZT plate are listed in Table 2. The PZT plated used is a
product called C-8 from FUJI Ceramics Inc. in Japan. An adhesive (ALKA-SQ102) was
used to combine the PZT and aluminum plates and its thickness was less than 0�1mm. In
the model for the aluminum and the PZT plates, the thickness of adhesive was ignored.

The three-horn transformer illustrated in Figure 4 was connected with the circular
vibrating plate by bolts. The three horns were made of aluminum and welded at their
joints. The sizes and shapes of the three horns were identical to those of the three horns
described and investigated in section 2.
Figure 9. Aluminum plate and piezoelectric ceramic actuator.

Table 2

Mechanical properties of the piezoelectric ceramic PZT used in the experiment

Property Symbol Value

Young’s modulus E11 59� 109 Pa
Young’s modulus E33 52� 109 Pa
Young’s modulus E55 21� 109 Pa
Piezoelectric charge constants d31 �260� 10�12 C/N
Piezoelectric charge constants d33 540� 10�12 C/N
Piezoelectric charge constants d15 750� 10�12 C/N
Piezoelectric voltage constants g31 �8�7� 10�3 m2/C
Piezoelectric voltage constants g33 18� 10�3 m2/C
Piezoelectric voltage constants g15 27�5� 10�3 m2/C
Relative dielectric constants e11=e0 3100
Relative dielectric constants e33=e0 3400
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In numerical simulations, the commercial program SYSNOISE was used. The structural
properties of the circular plate were investigated using the structure analysis module of
SYSNOISE and its first natural frequency was found to be 528Hz. As expected, the mode
shape of the first mode was not planar. Hence, the structure–acoustic interactions were
considered using the module for structure–acoustic interactions in SYSNOISE.

The conditions for simulations and experiments were of two types: a constant-velocity
condition and a constant-voltage condition. The constant-velocity condition implies that
the velocity of the vibrating circular plate is maintained constant. Since the velocity
distribution on the plate is not uniform the maximum velocity at the center was selected as
a representative velocity. In simulations, the velocity distribution of the first mode was
assumed. The frequency responses of velocities at several points were measured using a
laser interferometer (PolyTec OFV-3001, OFV-511); the experimental set-up for the
measurement is shown in Figure 10. The measured frequency response curves at several
points are shown in Figure 11. As expected, the velocity distribution is not uniform and
displays a maximum at the center in the frequency regions from 0 to 520Hz and above
800Hz.

As can be seen in Figure 11, the velocity was not constant with frequency even though
the applied voltage at the piezoelectric actuator was constant. In experiments, however, a
constant-velocity condition is hard to realize because the velocity at any location varies
Figure 10. Experimental set-ups (a) for measurements of the sound pressure at the axis in front of the opening,
and (b) for measurement of the velocity at the center of the vibrating sound-radiating plate.
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considerably, as illustrated in Figure 11. Figure 12 shows the voltage variation with
frequency while the measured velocity at the center is maintained to be as constant as
possible. It is difficult to maintain a constant velocity since the voltages around the
resonance frequency is very small compared with the voltages at 0Hz and 700–800Hz. The
constant-voltage condition is more natural and easier to maintain in experiments. For
acoustic considerations, the constant-velocity condition is more convenient.
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In order to experimentally investigate the effects of the three-horn acoustic transformer,
the acoustic pressure at the center of the outlet of the three-horn transformer was
measured using a half-inch microphone (B&K 4190) inside an anechoic room while electric
voltage was applied to the piezoelectric actuator at various frequencies. The measured
pressure was transferred to a computer through a data acquisition H/W (NI PCI-MIO-
16XE-10) and S/W (LabVIEW). The pressure measurement was performed from 100Hz
to 1 kHz in 20Hz increments. For the constant-voltage condition the applied voltage was
kept at 60V. For the constant-velocity condition the pressure was measured while the
velocity at the center of circular plate was controlled to be around 0�00228m/s. In reality,
the voltage was controlled by hand at a fixed frequency so that the velocity was the given
value and this procedure was iterated at a higher frequency.

The pressure at the center of the outlet of the three-horn acoustic transformer was
calculated using SYSNOISE at the same frequencies used for the experimental
measurements. The calculation results are quite different from the results obtained by
the analytic model derived in section 2. They are much closer to those from experiments.
The frequency response curves are shown as graphs in Figures 13 and 14. The comparisons
and characteristics are discussed in the next section.

3.2. RESULTS AND DISCUSSIONS

The constant-velocity condition is adequate to investigate the acoustic characteristic of
the three-horn acoustic transformer since the output acoustic pressure amplitudes in this
condition are directly related with the radiation efficiency. In Figure 13 the frequency
characteristics are shown for the acoustic pressure amplitudes generated using the three-
horn acoustic transformer. Several other curves are found in Figures 13 and 14. The solid
line represents the measured frequency characteristics and the dotted line does the
numerical simulation results by SYSNOISE. The dashed line shows the frequency
characteristics calculated by SYSNOISE for the acoustic pressure amplitude generated
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Figure 13. Acoustic pressure at the mouth in the constant velocity condition.
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Figure 14. Acoustic pressure at the mouth in the constant voltage condition.
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using a single exponential horn whose throat and mouth are identical to the inlet and
outlet of the three-horn acoustic transformer respectively. The gray lines are the calculated
and measured frequency characteristic curves of the acoustic pressure amplitudes using a
bare vibrating plate.

First of all, if the solid line is observed carefully, it is easily found that there are four
peaks and that the peak at lowest frequency is located at around 120Hz. It is recalled that
there is a big peak at approximately the same frequency in the frequency characteristic
curve obtained by the analytic model in section 2 (Figure 8). As can be seen in Figure 8,
the peak lies between 100 and 200Hz. The dotted line obtained using SYSNOISE has a
peak located closer to the frequency at which it is located in Figure 8. This implies that
numerical simulations and experiments confirm the effects on acoustic radiation efficiency
predicted in section 2. When the dotted line is compared with dashed line in the frequency
region below 200Hz, the calculated pressure generated using the three-horn acoustic
transformer is larger than the calculated pressure generated using one exponential horn.
Although the experiments provide smaller pressure values (the solid line) than the
calculations do (the dotted line) for an identical case, in Figure 13 it can be seen that the
solid curve from experiment is still higher in the narrow frequency region from 110 to
140Hz than the dashed one from the numerical calculations. This implies that if a sound is
generated using the three-horn acoustic transformer, its acoustic pressure is up to 20 dB
larger in the narrowband frequency region from 100 to 180Hz than that using one
exponential horn. Since the curves in Figure 13 represent the results from numerical
calculations or experimental measurements under the condition that the velocity
amplitude of the radiation surface is maintained constant, the larger output acoustic
pressure implies the more efficient sound generation. in other words, since the acoustic
radiation loading increases with use of the three-horn acoustic transformer, the radiation
power efficiency increases with it.

However, except the frequency region from 110 to 140Hz, the pressure amplitudes using
the three-horn acoustic transformer was up to 10 dB smaller than that using one
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exponential horn. Although improvement in radiation efficiency is limited to narrowband
frequency region, it is inspiring that the narrowband lies in the low-frequency region below
200Hz. The narrowband region may be controlled by the geometry of the transformer. It
is important that the three-horn acoustic transformer is more effective in the low-
frequency region, because it is difficult to increase the radiation efficiency for low-
frequency sounds in general. Till now horns are the most effective devices that improve
radiation efficiency acoustically. Therefore, the three-horn acoustic transformer may be
useful as a low-frequency sound generator such as a low-frequency SONAR projector. As
mentioned earlier, the widely used indirect method can generate low-frequency sounds at
most in ‘‘second order’’ magnitudes because it uses the non-linear interaction between two
high frequency sounds [11]. Therefore, its power efficiency is not as large as the low-
frequency sound generation using the developed acoustic transformer at least in the
narrow frequency band where the acoustic transformer shows a large radiation resistance.
But the acoustic transformer can make the sound emitting system bulkier, hence, it may
cause a problem in the case that the size should be compact.

In the frequency region above the first resonance frequency (about 500Hz) of the
radiating plate, the curves from the numerical calculations using SYSNOISE may be
different from the one shown in Figure 13 because the mode shape of the second mode is
different from that of the first. Considering this effect, comparisons between the solid and
the dotted curves in Figure 13 may be meaningless in this frequency region.

In Figure 14, the frequency response curves obtained from experiments and numerical
calculations are shown the under the constant-voltage condition. The overall character-
istics are not much different from those for the constant-velocity condition except for the
effects of resonance of the radiating plate at around 550Hz. The frequencies of the peaks
due to resonance of the radiating plate shown in Figures 13 and 14 are somewhat different
from the one found in Figure 11. It is explained by the fact that the tension was not the
same for the bolts joining the plate and the transformer in those cases. It was found that
the resonance frequency could vary from 500 to 580Hz, depending on the bolt tension.

The frequency response curves in Figure 14 are smoother than those in the constant-
velocity condition. It is believed that the fluctuations of the solid line from 500 to 900Hz in
Figure 13 may be caused by inaccuracy in the velocity control. It is interesting that the
solid line in Figure 14 is flatter than the dashed line. This suggests that the sound generator
using a three-horn acoustic transformer may be better in sound quality than a horn if the
radiating plate is driven by a voltage source.

4. CONCLUSION AND RECOMMENDATIONS

In this paper the acoustic characteristics of a three-horn acoustic transformer are
investigated. The three-horn acoustic transformer is constructed by connecting one
backward exponential horn, one forward exponential horn and a conical horn. It is
observed through calculations using an analytic model, numerical simulations using the
commercial program SYSNOISE, and experiments, that the acoustic transformer can
improve acoustic radiation efficiency in a narrowband frequency region. It is inspiring that
the narrowband lies in the low-frequency region where horns are not very effective. Hence,
it may be useful for devices such as low-frequency SONAR projectors.

The effects of the combination of various horns can be observed by studying the
characteristics of the three-horn acoustic transformer numerically and experimentally.
However, the physical parameters should be found to determine the bandwidth and center
frequency of the frequency region where the transformer increases radiation efficiency. In
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addition, whether the transformer can be successfully applied to low-frequency SONAR
projectors is still to be investigated because it can make the system bulkier. These issues
will be considered in our future work.
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